Non-parametric maximum likelihood estimation of interval-censored failure time data subject to misclassification

نویسنده

  • Andrew C. Titman
چکیده

The paper considers non-parametric maximum likelihood estimation of the failure time distribution for interval censored data subject to misclassification. Such data can arise from two types of observation scheme; either where observations continue until the first positive test result or where tests continue regardless of the test results. In the former case, the misclassification probabilities must be known, whereas in the latter case joint estimation of the event-time distribution and misclassification probabilities is possible. The regions for which the maximum likelihood estimate can only have support are derived. Algorithms for computing the maximum likelihood estimate are investigated and it is shown that algorithms appropriate for computing non-parametric mixing distributions perform better than an iterative convex minorant algorithm in terms of time to absolute convergence. A profile likelihood approach is proposed for joint estimation. The methods are illustrated on a data set relating to the onset of cardiac allograft vasculopathy in post-heart-transplantation patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval Censored Survival Data : A Review of Recent

We review estimation in interval censoring models, including nonparametric estimation of a distribution function and estimation of regression models. In the non-parametric setting, we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators. In the regression setting, we focus on the proportional hazards, the proportional odds and the accele...

متن کامل

Failure Process Modeling with Censored Data in Accelerated Life Tests

Manufacturers need to evaluate the reliability of their products in order to increase the customer satisfaction. Proper analysis of reliability also requires an effective study of the failure process of a product, especially its failure time. So, the Failure Process Modeling (FPM) plays a key role in the reliability analysis of the system that has been less focused on. This paper introduces a f...

متن کامل

Estimation and Reconstruction Based on Left Censored Data from Pareto Model

In this paper, based on a left censored data from the twoparameter Pareto distribution, maximum likelihood and Bayes estimators for the two unknown parameters are obtained. The problem of reconstruction of the past failure times, either point or interval, in the left-censored set-up, is also considered from Bayesian and non-Bayesian approaches. Two numerical examples and a Monte Carlo simulatio...

متن کامل

Interval Censored Survival Data A Review of Recent Progress

We review estimation in interval censoring models including nonparametric esti mation of a distribution function and estimation of regression models In the non parametric setting we describe computational procedures and asymptotic properties of the nonparametric maximum likelihood estimators In the regression setting we focus on the proportional hazards the proportional odds and the accelerated...

متن کامل

Nonparametric and Semiparametric Analysis of Current Status Data Subject to Outcome Misclassification.

In this article, we present nonparametric and semiparametric methods to analyze current status data subject to outcome misclassification. Our methods use nonparametric maximum likelihood estimation (NPMLE) to estimate the distribution function of the failure time when sensitivity and specificity are known and may vary among subgroups. A nonparametric test is proposed for the two sample hypothes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2017